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The s imi lar  solution of the problem of the nonsteady burning rate of a solid propellant for  falling p r e s -  
sure,  obtained by Zel 'dovich for a par t icu lar  dependence of the s teady-s ta te  burning rate on p re s su re  and 
initial tempera ture  [1], is extended to the case of an a rb i t r a ry  dependence. It is shown that under ra ther  
general  assumptions two solutions, corresponding to low and high burning rates ,  may exist. In the presence  
of a sharp change of p re s su re  the s imi lar  solutions cease to exist, which can be related to the attainment 
of cr i t ical  quenching conditions. The integral  equation relating the burning rate, surface tempera ture  and 
tempera ture  gradient  at the surface,  derived in [2], is used to obtain s imi lar  solutions for the model with 
var iable  surface tempera ture .  It is shown that these solutions can exist only if cer tain relations between 
the surface tempera ture  and the p res su re  and the tempera ture  gradient at the surface are  satisfied. An 
approximate relation between the a rb i t r a ry  pa rame te r s  of the solution and the kinetic charac te r i s t i cs  of the 
propellant gas i f i ca t ionreac t ion i s  established. The stability of the s imi lar  solutions at constant surface tem-  
pera tu re  is investigated; of the two possible solutions only the one corresponding to a lower burning rate 
is found to be stable. 

1. In [1] a solution was obtained for the nonlinear problem of the nonsteady burning rate of a p ro -  
pellant in the case when the s teady-s ta te  burning rate u ~ is related as follows with the p res su re  p and the 
initial t empera ture  of the propellant T o 

u ~  Bp~e ~T~ (B, v,[~ =const, v < t ,  B>0) (1.1) 

It was found that the p res su re  should decrease  with t ime according to the law 

l 
p = A t  - ~  (A = const >0) (1.2) 

We will consider  the case of an a rb i t r a ry  u ~ (p, To) dependence, assuming, as in [1], that the surface 
tempera ture  of the propellant is constant. We s tar t  f rom the heat conduction equation describing the one- 
dimensional propagation of heat in the propellant 

O0 00 020 

O =  T - - T o  u 
Ts__ To , W = --~- , 

- ~ o  

�9 u2t Ux �9 = - - ~ ,  ~=-~ (1.3) 

Here, T, TS, and T O are the variable temperature, surface temperature, and initial temperature; u 
is the linear burning rate; U is the characteristic rate (to be defined later); ~t, t, and x are the thermal 
diffusivity, time, and the space coordinate (the coordinate origin is tied to the surface of the propellant). 

It is known [3] that Eq. (1.3) with boundary conditions 

~=--~, 0 = 0 ;  ~ = 0 , 0  = 1  

has a similar solution if 

w = Cx-V, (C = const > 0) 

(1.4) 

(1.5) 
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This solution has the form 

z 

0 =  erfc,C--Y)erfr ( e r f c ( z ) = l - -  2 fe-U~dg' (1.6) 

The s imi lar  solution may be regarded  as simply an intermediate 
asymptot ic  form of the solution of the problem of t ransi t ion f rom one. 
s teady-s ta te  burning regime to another, if on a cer ta in  interval of the 
transient  p rocess  the law of p r e s s u r e  variat ion gives a time dependence 
of the burning rate of the fo rm (1.5). Intermediate  means that the sys-  
t em has ceased to "recal l"  the initial conditions of s teady-s ta te  burn-  
ing, but is still far  f rom the final s teady-s ta te  regime,  when the p r e s -  
sure  variat ion deviates f rom that corresponding to the s imi lar  solution. 

In o rder  to determine the law of p res su re  vari ation with time that 
gives a burning rate of the form (1.5), we assume that the function 

w = w (p, ~) (9 = (0O / 0Ds) (1.7) 

is known, since it can be obtained [1] f rom the experimental ly deter -  
mined dependence of the burning rate on p r e s s u r e  and initial t empera-  
ture in the s teady-s ta te  regime u~ ~ (p, To). Substituting in this re la-  
tion the express ion for  the initial t empera ture  in t e rms  of the surface 
tempera ture  and the tempera ture  gradient at the surface,  we obtain 

which is also co r r ec t  for the nonsteady regime [1, 4]. 

For  s imi lar  solution (1.6) we have 

w = - ~  ----w(p ( v ) ,T . )  T. =T  s -  !Tslf ~cTclf~c'e = con st (1.9) 

Normally the s teady-s ta te  burning rate increases  with increase  
in p ressure ;  accordingly,  the s imi lar  solution is real ized at decreasing 
p r e s su re s .  

2. If the s teady-s ta te  burning rate is taken in the form (1.1), then (1.9) takes the specific fo rm 

C B ]/~ -- ~ p" e ~T" (2.1) 

As the charac te r i s t i c  burning rate we take U = BpoVe flT0,where P0 is the unit of measurement  of p r e s -  
sure  in (1.1). Then f rom (2.1) we have 

C ( e-C" ) P (2.2) 
~f~ --z vexpk i ]/':~CerfaC ~ z =  po j k=~(F s - T 0 ) ~ l  

Here, k is the stability cr i ter ion of the s teady-s ta te  burning regime [1]. F rom (2.e) we obtain the di- 
mensionless  fo rm of the law of p r e s su re  variat ion 

i 

z = D~I ~27 {2.3) 

and the relation between the constants C and D in (1.5) and (2.3) 

D ~ C eric C 

We assume that the constant D in (2.3) is given. Relation (2.4) then defines the burning rate constants 
C in t e rms  of D. We represent  solution (2.5) in graphic form.  In Fig. 1 we have plotted the left (straight 
lines) and right sides of Eq. (2.4) as functions of C at a single value of the pa rame te r  k (k = 0.8) and several  
values of the constant D (D= 1.33, 0.91, and 0.75). At large D Eq. (2.4) has two solutions for the unknown 
C, one of which corresponds  to weak nonstationari ty of the burning rate [large value of C; in this case,  for 
the absolute value of the burning rate to change appreciably,  a large t ime is required - see (1.5)], while the 
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other corresponds  to strong nonstationari ty (small C). At D< D ,  a solution of (2.4) does not exist. The 
values of D,  and the corresponding C ,  are  found f rom the condition of tangency of the curves in Fig. 1 

ke-C" (l + 2C,: 2C,e-CJ ) 
C, -- V-~ erfc c,  V-~ er~fc c--:- (2.5) 

(The value of D,  is then found f rom (2.4) by substituting C ,  .) 

The dependence (2.5) is represented in Fig. 2. As k ~ 0 ,  which corresponds  [1] to a fully preheated 
and hence perfect ly  stable propellant,  C ,  ~ 0 .  Thus, of the two solutions,only that corresponding to weak 
nonstationari ty remains .  As k tends to the limit of stable s teady-s ta te  burning (k ~ 1) C ,  ~ C 0 =  0.540. In 
section 4 below it is shown that of the two solutions only that which cor responds  to the upper intersect ion 
of the curves  in Fig. 1 is stable. 

The absence of a solution at small  D can be interpreted,  following the ideas expressed in [1], as the 
quenching of the propellant in the presence  of a sharp p re s su re  drop. In this case the quantity D,  can be 
descr ibed as the cr i t ical  p re s su re  drop pa rame te r  charac ter iz ing  the cessat ion of combustion (it is shown 
in Fig. 3 as a function of k). This is a ra ther  conditional interpretation,  since the absence of a s imi lar  so- 
lution does not necessar i ly  imply that there is no solution of the problem at all. 

The existence of two s imi lar  solutions is not mentioned in [1], where the cr i t ical  rate of fall of p r e s -  
sure  was differently determined - in relation to the attainment of a cr i t ical  t empera ture  gradient at the su r -  
face of the propellant,  which leads to an express ion for C ,  different f rom (2.5). 

Nonuniqueness of the solution is a ra ther  general  proper ty  of the problem in question for  a b r o a d c l a s s  
of functions u ~ (p, TO). In par t icular ,  it is observed for  dependences of the type 

u ~ = h (p) h (To) 

where f2(T0) - a smooth continuous function - vanishes at a cer ta in  value of the argument different f rom 
- ~  as T o tends f rom T O = T S to -~o. Examples of such functions are  

t + aTo 
/ 2 ( T o ) : i + a T o ,  t--BTo- at a , [~>0,  ,t~>[~ 

and others used in propellant burning theory.  

3. We will now find the s imi lar  solution of the problem for a propellant model with var iable  surface 
tempera ture  and obtain the neces sa ry  laws of p r e s s u r e  variat ion with t ime and the form of the relations 
between surface tempera ture ,  p res su re ,  and initial t empera ture  admitting s imi lar  solutions. 

We s tar t  f rom the integral equation obtained in [2], which relates  the burning rate, the tempera ture  
gradient  at the surface,  and the surface tempera ture .  In dimensionless form it is writ ten 

- -w 0s(~) exp [ -- (~ + K) l ~ l  (321) 
o 4(~-~)JL0 s 2(~-~ ' ) j  ~ - ~  ~ ] ~  

- - o o  

~' 0 

where 00(~) = 0 (~, 0) is the initial s teady-s ta te  tempera ture  distribution in the subsurface heating zone (be- 
fore the t ransient  p rocess  begins). 

We will find the s imi lar  solution in the form in which the burning rate is given by relat ion (1.5), the 
surface tempera ture  by 

0s = F~", F .=  const > 0 (3.2) 

(n is an a rb i t r a ry  real  number), and the relation between the tempera ture  gradient and the surface tem- 
pera ture  by 

r G 
~-s = ~ '  G = const ~ 0 (3.3) 

Bearing in mind that the s imi lar  solution corresponds  to an intermediate stage in which the initial 
conditions are  no longer influential (large t imes v ), we omit the second integral in (3.1) (it tends to zero  

517 



as 1- ~ ~). Then substi tuting (3.2) and (3.3) in integral  equation (1.5) and going over  to the new independent 
va r i ab le  (r=~'/T' in the integrand, we obtain 

1 

[ ] ----~ ~,V'}- V}- + exp - - C  ~ 1-- V}- dz 
i + V}- Y ~ - :  (3.4) 

0 

Thus, the time T is completely eliminated from the integral equation, which indicates a correct choice 
of the time relations (1.5), (3.2), and (3.3). Equation (3.4) serves for determining the relation between the 
constants C and G. 

In the particular case n = 0, corresponding to the model with T S =const, the integrals in (3.4) can be 
evaluated, which leads to a relation between G and C consistent with the results of section 2. At n~0 it is 
necessary to employ numerical methods of calculating the relation G(C) given by Eq. (3.4). 

We now turn to the pressure variation that ensures a similar solution of the problem for the model 
with variable surface temperature. Instead of (1.9) we have 

-----'w [p, ('v), TO --[- F (3.5) 

In pa r t i cu la r ,  for  a dependence of t h e t y p e  (1.1) the p r e s s u r e  should v a r y  as  

] (3.6) g 

where  Ts~  0 is the cha rac t e r i s t i c  t e m p e r a t u r e  di f ference used for  normal iza t ion ,  for  example ,  the dif- 
fe rence  between the sur face  t e m p e r a t u r e  and the initial t e m p e r a t u r e  in the s t eady - s t a t e  burning reg ime  
(see below). 

We will now cons ider  the conditions that mus t  be sa t is f ied  by the dependence of the sur face  t e m p e r a -  
ture  on the initial t e m p e r a t u r e  and p r e s s u r e  in the s t eady-s t a t e  reg ime ,  for  which under  nonsteady condi- 
t ions the sur face  t e m p e r a t u r e  v a r i e s  in accordance  with (3.2). The t rans i t ion  f r o m  the s t eady - s t a t e  de- 
pendence 0 S = 0 S (p, T 0) to the nonsteady re la t ion  between sur face  t e m p e r a t u r e  and p r e s s u r e  and t e m p e r a -  
ture  gradient  is made in the s ame  way (see [4]) as the cor responding  t r ans fo rma t ion  fo r  the burning ra te  
(1.9) 

I ,37  Os----Os p, T s - - - ~ -  -~x 

Using re la t ions  (3,2), (1.5), and (3.3), we a r r i v e  at the conclusion that the following re la t ion mus t  be 
identically sat isf ied:  

where  p(T) is given by (3.6). Consequently, in o rde r  for  there  to be a s i m i l a r  solution, the function 0S~ 
(p, To) must  have a pe r fec t ly  definite form.  

In analyzing exper imenta l  data on the var ia t ion  of the sur face  t e m p e r a t u r e  of a burning propel lant  
it is cus tomary  to employ the re la t ion  [5] u=u(p,  TS), which can be obtained f r o m  the re la t ions  u(p, ~o) and 
Ts(P, ~0) by el iminat ing the gradient .  An express ion  in common use, for  example ,  is the extrapolat ion 
fo rmula  

u ---- Hexp (-- E / RTs) (3.9) 

where H is a ce r t a in  constant ( z e ro -o rde r  gasif icat ion reaction),  R is the gas  constant,  and E is  a cha r -  
ac t e r i s t i c  energy,  which may  be r ega rded  as the act ivat ion energy,  if it is a s sumed  that gasif icat ion is the 
r e su l t  of a he terogeneous  reac t ion  at the su r face  of the propel lant ,  or  as approx imate ly  half the act ivat ion 
energy of the volume decomposi t ion react ion.  

If  as the cha r ac t e r i s t i c  ra te  we take the s t eady- s t a t e  burning ra te  

u ---- Hexp (-- E / RTs ~ (3.10) 

then in d imensionless  fo rm (3.9) may be wri t ten 

{sA 0s -- l 
tO e x p  \ 
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0s = Ts --  TO E T8~ --  To 
TS ~ - -  To'  8 -~ RTS-----~ , A = T------~--- (3.11) 

A s s u m i n g  tha t  [ 0 S - 1 1  << 1, we can  r e w r i t e  (3.11) in the  a p p r o x i m a t e  f o r m  

w ~ 0s'* (ra = 8a / (1 + a)) (3.12) 

In the s i m i l a r  so lu t i on  the  b u r n i n g  r a t e  w and the  s u r f a c e  t e m p e r a t u r e  0 S m u s t  depend  on t i m e  in 
a c c o r d a n c e  with  (1.5) and  (3.2). Subs t i tu t ing  t h e s e  func t ions  in (3.12), we s e e  tha t  r e l a t i o n  (3.9) (na tu ra l ly ,  
in  the  a p p r o x i m a t i o n  u s e d  in d e r i v i n g  (3.12)) a d m i t s  a s i m i l a r  so lu t i on  of  the  p r o b l e m  if  a s  F and n we t ake  

F = C ~m, n = - -1 /~m ~ 0  (3.13) 

i . e . ,  if  the  s u r f a c e  t e m p e r a t u r e  f a l l s  wi th  t i m e .  

In v iew of the  u s u a l l y  l a r g e  e n e r g y  E I n l << 1. The  s i m i l a r  so lu t ion  of the  p r o b l e m  with  c o n s t a n t  s u r -  
f a ce  t e m p e r a t u r e  m a y  thus  be  r e g a r d e d  a s  tha t  c o r r e s p o n d i n g  to an  in f in i t e ly  l a r g e  v a l u e  of E (n = 0). 

The  t e m p e r a t u r e  d i s t r i b u t i o n  in the  p r o p e l l a n t  can  be  ob ta ined  f r o m  the so lu t ion  of hea t  conduc t ion  
equa t ion  (1.3). I t  i s  r e d u c e d  to an equa t ion  in  o r d i n a r y  d e r i v a t i v e s  by  the  cho ice  of s i m i l a r  v a r i a b l e  y and 
the  i n t r o d u c t i o n  of  the  new func t ion  

0 = x ~a? (y), y = ~ / 2 1 f ~  (3 .14)  

We have 

dy~ q- 2 (y - -  C) - -  4n~  0 (3.15) 

wi th  b o u n d a r y  cond i t i ons  

y = - -  co, ~ = 0; y ~ 0, ~ = F = const (3.16) 

Equa t ion  (3.15) i s  r e d u c e d  to a p a r t i c u l a r  f o r m  of the  W h i t t a k e r  equat ion ,  whose  so lu t ion  i s  e x p r e s s e d  
in t e r m s  of the  W h i t t a k e r  func t ion  [6] 

,ff = exp [---~y----O I, ~/~ (y --  C)~] I C 1 W  . . .  ((n--I-- + )  " ~ - ' i  ~ ( y  - -  C) ~) -{- (3.17) 

w h e r e  W is  the  W h i t t a k e r  funct ion,  and C 1 and C 2 a r e  c o n s t a n t s  of i n t e g r a t i o n ,  which  m u s t  be  d e t e r m i n e d  
f r o m  cond i t i ons  (3.16). At n > 0 the  f i r s t  of the  func t ions  W in b r a c e s  i n c r e a s e s  without  bound a s  y ~ -  r 
and ,  a c c o r d i n g l y ,  the  f i r s t  of cond i t i ons  (3.16) r e q u i r e s  tha t  C l =  0. The  s e c o n d  c o n s t a n t  i s  e x p r e s s e d  in 
t e r m s  of F 

The c l a s s  of s i m i l a r  so lu t i ons  fo r  the  m o d e l  with v a r i a b l e  s u r f a c e  t e m p e r a t u r e  c o n s i d e r e d  above  can  
be  f u r t h e r  e x t e n d e d  b y  the fo l lowing s i m p l e  m e a n s .  P r e v i o u s l y ,  in so lv ing  the hea t  conduc t ion  equat ion ,  the 
s p a c e  v a r i a b l e  ~ was  a s s u m e d  to l i e  on the  i n t e r v a l  [-0% 0]. We now cont inue  the  so lu t i ons  (1.6) and (3.17) 
onto the  i n t e r v a l  of  the  v a r i a b l e  -co < ~ < +co and l o c a t e  the  s u r f a c e  of the  p r o p e l l a n t  a t  the  po in t  ~ = ~0. At 
~0 = 0 so lu t i on  (1.6) c o r r e s p o n d s  to the  m o d e l  wi th  c o n s t a n t  s u r f a c e  t e m p e r a t u r e ,  and so lu t ion  (3.17) to  tha t  
with s u r f a c e  t e m p e r a t u r e  v a r y i n g  a c c o r d i n g  to p o w e r  l aw (3.2). When ~0 s 0  the  s u r f a c e  t e m p e r a t u r e  is  a 
func t ion  of t i m e  tha t  i s  n e i t h e r  c o n s t a n t  n o r  the  s a m e  as  (3.2). In  p a r t i c u l a r ,  a t  n = 0 th i s  func t ion  t a k e s  
the  f o r m  

T S (~o,~) = To + TS~ - -  TO -I 2 e-~d~] = ~o 

0 

(3.19) 

If  } 0 < 0, then  the  s u r f a c e  t e m p e r a t u r e  i n c r e a s e s  wi th  t i m e  and a t  l a r g e  t i m e s  t ends  in the  l i m i t  to the  
c o n s t a n t  v a l u e  TS~ If, h o w e v e r ,  ~0 > 0, then  the s u r f a c e  t e m p e r a t u r e  d e c r e a s e s  with t i m e  and l i k e w i s e  
t ends  to TS~ 
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Calculating the tempera ture  gradient  at the surface  f rom (3.19) and substituting, as before, in (1.9), 
we obtain a relation giving the required law of p r e s s u r e  variat ion 

]/~ - Ts~ C V-~erfcC 2 I/X ] ]J (3.20) 

F rom (3.9) there follows a relation for the surface tempera ture  that defines the class  of propellants 
with var iable  surface tempera ture  for  which it is possible to obtain s imi lar  solutions: 

T0 ?/1 -~-~-T / ]/ 

We note that (3.21) contains the free pa r ame te r  t0, which can be used, together  with TS~ to approximate 
the experimental data. A s imi lar  procedure  can also be followed when n ~ 0. 

4. In Sec. 2 we showed in relation to the model with constant surface tempera ture  that there are  two 
solutions of the s imi lar  problem. The question ar i ses ,  which of these solutions is actually realized, i.e., 
which is stable. 

As distinct f rom investigations of the stability of s teady-s ta te  solutions, where those solutions for 
which the absolute value of infinitely small  perturbat ions increases  with t ime are  considered unstable, in 
the case of s imi lar  solutions it is necessa ry  to examine the behavior of the relative value of the per turba-  
tions - the rat io of the perturbat ion amplitude to the undisturbed solution, which is also a function of time. 
(This approach was previously used to investigate the stability of a laminar  spherical  flame in [7].) In 
this case solutions whose t ra jec tory  in the presence  of perturbations remains close to that without pe r -  
turbations are  considered stable. 

If in heat conduction equation (1.3) we go over  f rom the independent var iables  (~-, ~) to the var iables  
(~ =ln r ,  y) and f rom the function 0 to the function ~ in accordance  with (3.14), then after  l inearizat ion we 
obtain an equation for the perturbat ions that does not contain the var iable  ~ in explicit fo rm 

060 0~6~ , 06t~ dt~ o (4.1) -~ -  = ~ -t- 2 (y -- C) -~y -- 2C6Z ~ -  -- 4n6ff 

Here, 5 denotes the small  perturbations,  6E is the relat ive value of the burning rate perturbat ion 
6Z= 6w/w,  ~~ is the undisturbed solution (3.17). 

As usual, the solution of Eq. (4.1) can be found in exponential fo rm for  ~. However, it is also nec-  
e s sa ry  that the additional relations for  the perturbat ion of burning rate, surface temperature ,  and t empera -  
ture gradient,  which follow f rom the algebraic  relat ions between the burning rate,  p res su re ,  and tempera-  
ture gradient  and between the surface temperature ,  p ressure ,  and tempera ture  gradient,  do not contain time 
in explicit form.  

It turns  out that this is possible only for a specific fo rm of the relation between the s teady-s ta te  burn-  
ing rate, p res su re ,  and initial tempera ture .  In fact, the function (3.5) can be written in the form 

C ~F (z, j), ] = 0s (P (4.2) w = ~  = - - - ; -  

Linearizing (4.2) and using (3.2), (3.3), 

6w ~,/G [ " ) ( t  m 4 ) ]  -~ a't" (4.3) 

In o rde r  for  it to be possible to employ the method of solution using exponential perturbat ion re la -  
tions in ~ =ln r ,  it is necessa ry  that 

IF) 
~F J P -n --q- F ( ~---) 2n const 

Integrating this relation, we find 

W = [Z ( z ) - - cons t (Os - -  ~ ,q-1/~n "-5-) J ' 

(4.4) 

n ~= 0 (4.5) 

n = 0 (4.6) 
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where Z(z) is an a rb i t r a ry  function of the dimensionless p r e s su re  z. We 
note, in par t icular ,  that the previously considered burning law (1.1) leads 
to a functional dependence of the type (4.6). 

If the solutions for the perturbat ions are  represented in the form 
of exponentials in log time 

6~ = f(1) (g) e~, 6Z = coast e ~ (4.7) 

then the solution investigated for stability is assumed to be unstable at 
Re w > 0. If  we re turn to the s tar t ing variable,  t ime 1-, then (4.7) c o r -  
responds to the power law 

6~ ~ ~ ,  6w = w6X = coast ~-v~ (4.8) 

and on going over  to the perturbat ion 6 0 

80 (% g) = ] (3) (g) T n+~ (4.9) 

(the fo rm of the function f(2) (y) must  be found f rom the solution of the heat conduction equation). The pe r -  
turbation of the tempera ture  gradient at the surface of the propellant is calculated f rom (4.9) as 

89 (4.10) 

We now find the limit of stability of the solutions for the model with constant surface tempera ture  
(n= 0). For  this purpose we employ integral equation (3.1), which, if we separate  the perturbat ions of the 
tempera ture  gradient  6 <p, the burning rate 6w, and integral 6I, can be rewrit ten for the s imi lar  solution in 
the fo rm 

1 1 

v ~  
o 

\ t +  V T / J  V l - z  

Here, we have introduced the var iable  x = r  ' / r  and used the form of the undisturbed solution (1.5). 

F rom the relation obtained it is c lear  that in accordance with (4.8) and (4.10) the integral does not 
depend on t ime ~, if the perturbations of the burning rate and tempera ture  gradient are  represented  in 
the fo rm 

89 (~) = 5%m l, 5w = 8w0 ~z (4.12) 

where l is an a rb i t r a ry  real  number;  compar ison with {4.8) gives l =(z - l /2 .  Substituting (4.12) in (4.11), we 
obtain a relat ion between the amplitudes 6 % and 6w 0. In what follows we shall be interested only in the sta-  
bility l imit for  which Re w= O. We further  assume that at the l imit Im co= 0, calculations show that the r e -  
lations obtained can be satisfied on this assumption, which also points to its validity. Evaluation of the 
integrals  leads to a relation between the gradient and burning rate perturbations 

~o ~e_ c, (1 -- err ~ C) = 2e-c~ (1 + erf C) _ _  2 ~f-~C (i + err C) (4.13) 
8w0 erfc C 

We obtain a second relation between 6(p 0 and 6w 0 by considering the function relating the burning rate,  
p res su re ,  and tempera ture  gradient.  F r o m  the s teady-s ta te  burning law (1.1) we easi ly obtain 

5~~ i ( k C  ) 6w0 = ~ -  -C- -- l (4.14) 

(in the var ia t ion p rocess  it is assumed that z =const).  

F r o m  (4.13) and (4.14) we obtain a relat ion between C and k at the stability l imit which has a form 
that coincides identically with tangency condition (2.5). The point of tangeney is the cr i t ical  point separa t -  
ing the stable f rom the unstable solutions of the problem. At this point both the real  and imaginary par ts  
of the charac te r i s t i c  frequency w vanish. 

Bearing in mind that in the limit at large C the upper point of intersect ion of the curves  in Fig. 1 
descr ibes  burning with weak nonstationarity,  f rom continuity considerat ions we conclude that it cor responds  
to the stable solution, and the lower point of intersect ion to the unstable solution. 
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We r e p r e s e n t  the resu l t s  obtained in a graph in which the burning ra te  is plotted against  the t e m p e r a -  
ture  gradient  at the su r face  (Fig. 4). To be specif ic ,  we a s sume  that the dependence of the s t eady- s t a t e  
burning ra te  on p r e s s u r e  and initial t e m p e r a t u r e  is  given by Eq. (1.1), which, on going over  to nonsteady 
burning conditions, yields  the re la t ion 

w = z~expk ~1---27..} (4.15) 
\ tu/ 

In Fig. 4 the relation w(go) (4.15) has been plotted for three values of the pressure (z v = 0.5, 1.0, 2.0). 
The curves have infinite derivatives, which, as it is easy to see, lie on the straight line w =kgo (straight 

line I). 

Steady-state burning at various pressures and a single value of the initial temperature (which was 
selected as the characteristic temperature) is described by t he straight line w= go (straight line 2). 

As the initial temperature varies, so does the slope of the straight line corresponding to steady-state 
burning. In particular, the slope of the straight line (I.I) corresponds to the temperature To* at which 
fl (Ts--T0*) = i, i.e., corresponds to the stability limit of the steady-state solutions. Accordingly, the lower 
unstable branches of the w(go) curves in Fig. 4 are shown dashed. 

In Fig. 4 the similar solutions are also represented by straight lines. In fact, from the relations of 
Sec. 2 we have 

w = ]/~ CeC'erfcC(p (4.16) 

At la rge  C s t ra ight  line (4.16) tends to s t ra ight  line 2 cor responding  to s t eady- s t a t e  burning (weak 
nonstat ionari ty) .  As C ~ 0  (strong nonstat ionari ty)  s t ra ight  line (4.16) approaches  the axis  of a b s c i s s a s  and 
en te rs  the region of unstable s t eady-s t a t e  solutions.  

The stabil i ty l imi t  of the s e l f - s i m i l a r  r e g i m e s  is obtained by subst i tut ing in (4.16) the c r i t i ca l  value 
C ,  given by (2.5). It has also been plotted in Fig. 4 (dashed s t ra ight  line). Clear ly ,  the region of s tabil i ty 
of the s i m i l a r  solutions is b r o a d e r  than the region of stabil i ty of the s t eady- s t a t e  solutions; this is a s s o -  
ciated with the different definition of an unstable per turbat ion .  

We note that in [1] the c r i t e r ion  for  determining the stabil i ty l imi t  of the s i m i l a r  solutions was the 
a t ta inment  of the c r i t i ca l  t e m p e r a t u r e  gradient  at the su r face  of the propel lant .  In this case  no cons ide ra -  
tion was given to the question of how the per turba t ion  v a r i e s  in t ime  as compared  with the va r ia t ion  of the 
undis turbed quantity. 
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